
Package: himach (via r-universe)
October 15, 2024

Type Package

Title Find Routes for Supersonic Aircraft

Version 0.3.2.9000

Description For supersonic aircraft, flying subsonic over land, find
the best route between airports. Allow for coastal buffer and
potentially closed regions. Use a minimal model of aircraft
performance: the focus is on time saved versus subsonic flight,
rather than on vertical flight profile. For modelling and
forecasting, not for planning your flight!

License MIT + file LICENSE

URL https://github.com/david6marsh/himach,

https://david6marsh.github.io/himach/

BugReports https://github.com/david6marsh/himach/issues

Depends R (>= 3.5.0)

Imports cppRouting, data.table, dplyr (>= 1.0.0), geosphere, ggplot2,
lwgeom, methods, purrr, s2, sf (>= 1.0), tidyr

Suggests airportr, covr, cowplot, knitr, progress, rmarkdown,
rnaturalearthdata, scales, spelling, stringr, testthat (>=
3.0), units, utils, viridis

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

Language en-GB

LazyData true

RoxygenNote 7.2.3

Repository https://david6marsh.r-universe.dev

RemoteUrl https://github.com/david6marsh/himach

RemoteRef HEAD

RemoteSha 35c5f0fb7b05cf2341069fd6507608bd2e54c461

1

https://github.com/david6marsh/himach
https://david6marsh.github.io/himach/
https://github.com/david6marsh/himach/issues

2 crs_120E

Contents
crs_120E . 2
crs_Atlantic . 3
crs_longlat . 3
crs_N . 4
crs_Pacific . 4
crs_S . 5
find_leg . 5
find_route . 7
find_routes . 9
GridLat-class . 10
hm_clean_cache . 11
hm_get_test . 12
hm_load_cache . 13
hm_save_cache . 13
mach_kph . 14
make_aircraft . 15
make_airports . 16
make_AP2 . 17
make_route_envelope . 18
make_route_grid . 19
map_routes . 20
profile_routes . 23
st_window . 24
summarise_routes . 25

Index 27

crs_120E Asia-centred coordinate reference system

Description

Coordinate reference system (CRS) for plotting and analysing maps. Centred on East Asia (120E).

Usage

crs_120E

Format

CRS

Details

"+proj=robin +lon_0=120 +x_0=0 +y_0=0 +ellps=WGS84 +datum=WGS84 +units=m +no_defs"

crs_Atlantic 3

See Also

crs_Atlantic, crs_Pacific, crs_N, crs_S

crs_Atlantic Atlantic-centred coordinate reference system

Description

Coordinate reference system (CRS) for plotting and analysing maps. Atlantic-centred. Works
for most analysis, but not recommended for N-region (eg New Zealand and Fiji), instead use
crs_Pacific.

Usage

crs_Atlantic

Format

CRS

Details

crs_Atlantic is "+proj=robin +lon_0=0 +x_0=0 +y_0=0 +ellps=WGS84 +datum=WGS84 +units=m
+no_defs"

See Also

crs_Pacific, crs_120E, crs_N, crs_S

crs_longlat Lat-long coordinate reference system

Description

Coordinate reference system (CRS) for creating maps from longitude-latitude coordinates. Used in
analysis, but not recommended for plots.

Usage

crs_longlat

Format

CRS

4 crs_Pacific

Details

crs_longlat is EPSG4326

See Also

crs_Atlantic, crs_Pacific, crs_S, crs_N

crs_N Arctic-centred coordinate reference system

Description

Coordinate reference system (CRS) for plotting and analysing maps. WGS 84 / Arctic Polar Stere-
ographic. Used in analysis, but not recommended for plots.

Usage

crs_N

Format

CRS

Details

crs_N is EPSG3995

See Also

crs_Atlantic, crs_Pacific, crs_120E, crs_longlat, crs_S

crs_Pacific Pacific-centred coordinate reference system

Description

Coordinate reference system (CRS) for plotting and analysing maps. Pacific-centred.

Usage

crs_Pacific

Format

CRS

crs_S 5

Details

"+proj=robin +lon_0=180 +x_0=0 +y_0=0 +ellps=WGS84 +datum=WGS84 +units=m +no_defs"

See Also

crs_Atlantic, crs_120E, crs_N, crs_S

crs_S Antarctic-centred coordinate reference system

Description

Coordinate reference system (CRS) for plotting and analysing maps. WGS 84 / Antarctic Polar
Stereographic. Used in analysis, but not recommended for plots.

Usage

crs_S

Format

CRS

Details

crs_N is EPSG 3031

See Also

crs_Atlantic, crs_Pacific, crs_120E, crs_longlat, crs_N

find_leg Find best non-stop route between 2 airports

Description

find_leg finds the quickest non-stop route for ac between two airports ap2.

6 find_leg

Usage

find_leg(
ac,
ap2,
route_grid,
fat_map,
ap_loc,
avoid = NA,
enforce_range = TRUE,
best_by_time = TRUE,
grace_km = NA,
shortcuts = TRUE,
ad_dist_m = 100 * 1000,
ad_nearest = 12,
max_leg_circuity = 1.4,
...

)

Arguments

ac, ap2, route_grid, fat_map, ap_loc, avoid
See find_route

enforce_range If TRUE (default) then leg is constrained to aircraft range, otherwise routes of
excess range can be found.

best_by_time If TRUE (default) then the quickest route is found, else the shortest distance.

grace_km Default NA. Otherwise, if great circle distance is within 3pct of aircraft range,
then add grace_kmkm to the range.

shortcuts If TRUE (default) then path will be checked for great circle shortcuts.

ad_dist_m The length of arrival/departure links, in m. (Default 100,000=100km)

ad_nearest The number of arrival/departure links to create (Default 12)
max_leg_circuity

The maximum detour over great circle distance that can be flown to find a quick
over-sea route. Default 1.4.

... Other parameters, passed to make_route_envelope

Details

This function finds the quickest non-stop route between two airports. A ’route’ is made up of one
or two ’legs’ (airport to airport without intermediate stop). find_route makes one or more calls to
find_leg as required.

It assumes that the routing grid, route_grid, has already been classified as land or sea using the
map fat_map. The map is further used when converting the grid-based route to one of great-circle
segments.

In fact find_leg finds up to 4 versions of the path:

1. A great circle, direct between the airports

find_route 7

2. A grid path, consisting of segments of the routing grid, plus departure and arrival routes from
the airports

3. A simplification of the grid path to great circle segments

4. shortcuts defaults to TRUE. Without this, you see near-raw Dijkstra results, which are _not_
shortest great circle.

Legs are automatically saved in route_cache and retrieved from here if available rather than re-
calculated. See vignette on caching for cache management.

Value

Dataframe with details of the leg

Examples

need to load some of the built-in data (not run)
Not run:
aircraft <- make_aircraft(warn = FALSE)
airports <- make_airports(crs = crs_Pacific)
get test datasets
NZ_buffer30 <- hm_get_test("buffer")
NZ_grid <- hm_get_test("grid")

options("quiet" = 4) #for heavy reporting
from Auckland to Christchurch
ap2 <- make_AP2("NZAA","NZCH",airports)
routes <- find_leg(aircraft[4,],

ap2,
fat_map = NZ_buffer30,
route_grid = NZ_grid,
ap_loc = airports)

End(Not run)

find_route Find best route between 2 airports

Description

find_route finds the quickest route between two airports, refuelling if necessary

Usage

find_route(
ac,
ap2,
fat_map,
avoid = NA,
route_grid,

../doc/Supersonic_routes_in_depth.html#cache

8 find_route

cf_subsonic = NA,
refuel = NA,
refuel_h = 1,
refuel_only_if = TRUE,
refuel_topN = 1,
max_circuity = 2,
ap_loc,
margin_km = 200,
...

)

Arguments

ac One aircraft, as from make_aircraft

ap2 One airport pair, as from make_AP2

fat_map sf::MULTIPOLYGON map of land, including buffer

avoid sf::MULTIPOLYGON map of areas not to fly over

route_grid GridLat routing grid as from make_route_grid

cf_subsonic Further aircraft to use as comparator, default NA. (use is not recommended)

refuel Airports available for refuelling, dataframe with APICAO,long, lat

refuel_h Duration of refuelling stop, in hours

refuel_only_if If TRUE (default) only test refuel options if necessary because the great circle
distance is too far for the aircraft range

refuel_topN Return the best N (default 1) refuelling options

max_circuity Threshold for excluding refuelling stops (default 2.0)

ap_loc Airport locations as from make_airports

margin_km Great circle distance between airports must be less than aircraft range minus this
operating margin (default 200km), to give a margin for arrival and departure.

... Other parameters, passed to find_leg and thence to to make_route_envelope.

Details

This function finds the quickest route between two airports. A ’route’ is made up of one or two ’legs’
(airport to airport without intermediate stop). find_route makes one or more calls to find_leg as
required.

It assumes that the routing grid, route_grid, has already been classified as land or sea using the
map fat_map. The map is further used when converting the grid-based route to one of great circles
segments.

Value

Dataframe with details of the route

find_routes 9

Refuelling

If either necessary, because the great circle distance is greater than the aircraft range, or because
refuel_only_if is FALSE, find_route searches through a list of refuelling airports and chooses
the quickest one (or refuel_topN).

Circuitous refuelling is avoided, tested against total distance < max_circuity * great circle dis-
tance. This is separate to the limits placed on circuity of individual legs in find_leg.

If no refuel option is found, a message is displayed. The route with ‘NA‘ for ‘time_h‘ is returned.

Each refuelling stop costs refuel_h in addition to the time to descend to the airport and then to
climb out again.

Examples

need to load some of the built-in data
aircraft <- make_aircraft(warn = FALSE)
get test datasets
NZ_buffer30 <- hm_get_test("buffer")
NZ_grid <- hm_get_test("grid")
airports <- make_airports(crs = sf::st_crs(NZ_buffer30))

options("quiet" = 4) #for heavy reporting
from Auckland to Christchurch
ap2 <- make_AP2("NZAA","NZCH",airports)
on some CRAN machines even this takes too long, so not run
Not run:
routes <- find_route(aircraft[4,],

ap2,
fat_map = NZ_buffer30,
route_grid = NZ_grid,
ap_loc = airports)

End(Not run)

find_routes Find best routes between airport-pair & aircraft combinations

Description

find_routes combines an aircraft and airport-pair list and finds the best routes between them,
refuelling if necessary

Usage

find_routes(ac_ids, ap2_ids, aircraft, airports, ...)

10 GridLat-class

Arguments

ac_ids A vector of aircraft IDs, as in column ’id’ from make_aircraft

ap2_ids A 2-column matrix or dataframe of airport pair text IDs

aircraft Specification of the aircraft, see make_aircraft

airports Airport locations as from make_airports

... Other parameters, passed to find_route.

Details

This function finds is a wrapper for the single-case function find_route. It takes (text) lists of
aircraft and airport codes, combines them, then finds routes for all of these. A ’route’ is made up of
one or two ’legs’ (airport to airport without intermediate stop).

For more details see find_route

Value

Dataframe with details of the routes

Examples

need to load some of the built-in data
aircraft <- make_aircraft(warn = FALSE)
airports <- make_airports(crs = crs_Pacific)
get test datasets
NZ_buffer30 <- hm_get_test("buffer")
NZ_grid <- hm_get_test("grid")

options("quiet" = 4) #for heavy reporting
from Auckland to Christchurch
ap2 <- make_AP2("NZAA","NZCH",airports)
Not run:
routes <- find_route(aircraft[4,],

ap2,
fat_map = NZ_buffer30,
route_grid = NZ_grid,
ap_loc = airports)

End(Not run)

GridLat-class A grid and lattice combination

hm_clean_cache 11

Description

A GridLat keeps together a grid of points and a lattice of links between those points.

It has 3 components:

* A character name, which isn’t used much in anger but might help you remember what’s gone
into it. * A dataframe containing the points of the lattice (the vertices), which each have an ID, a
longitude and latitude. * A dataframe containing the edges of the lattice, joining the points.

hm_clean_cache Clean the route and SID-STAR cache.

Description

Empties the cache.

Usage

hm_clean_cache(cache = c("route", "star"))

Arguments

cache Which caches to clear. Default is both c("route","star").

Value

TRUE silently

See Also

For more details see the cache section in the vignette: vignette("Supersonic_Routes_in_depth",
package = "himach"). or Vignette on caching

Examples

hm_clean_cache("route")

hm_clean_cache()

../doc/Supersonic_Routes_in_depth.html#cache

12 hm_get_test

hm_get_test Get test data

Description

Access 5 datasets that are used in vignettes and in testing.

Usage

hm_get_test(item = c("coast", "buffer", "nofly", "grid", "route"))

Arguments

item Any one of "coast", "buffer", "nofly", "grid", "route". See details.

Details

"coast" A dataset containing sf::MULTIPOLYGONS for New Zealand. Simplified version of
Stats NZ data, at 1km resolution.

"buffer" As "coast" but with an added 30km buffer to keep supersonic flight away from the
coast.

"nofly" As "buffer", but limited to Buller district with a 40km buffer. To test additional no-fly
zones.

"grid" Latitude-longitude-based routing grid around New Zealand at 30km target distance, as
generated by make_route_grid, so format is GridLat

"route" Some very unlikely supersonic routes around New Zealand using the test aircraft that was
given a very short range and slow subsonic cruise to get the example to ’work’. Includes one
refuelling stop (!) in Wellington. [Not for operational use!] Returns a dataframe.

This is not the normal way to access package test data. But the usual, direct, way fails on some
machines that have some older software (a known feature of the ‘sf‘ package). This is a least-ugly
workaround.

Value

See list above

Source

https://datafinder.stats.govt.nz/layer/104266-territorial-authority-2020-clipped-generalised/

Examples

NZ_coast <- hm_get_test("coast")

https://datafinder.stats.govt.nz/layer/104266-territorial-authority-2020-clipped-generalised/

hm_load_cache 13

hm_load_cache Load route and SID/STAR cache

Description

This silently overwrites any existing values in the cache.

Usage

hm_load_cache(file)

Arguments

file Including the path.

Value

Invisible true

See Also

For more details see the cache section in the vignette: vignette("Supersonic_Routes_in_depth",
package = "himach"). or Vignette on caching

Examples

not run
hm_load_cache(file="") #load from this file

hm_save_cache Save route and SID/STAR cache to file

Description

Filename is "route_star_cache_id_XXX.rda" where "id" is the id parameter and XXX is made
up from the name of the grid (which identifies the map used) and the ’aircraftSet’ attribute of the
aircraft dataset (which identifies the source). This is because the cache should be for a unique
combination of these (and you must have these available, because they were needed to generate the
routes).

Usage

hm_save_cache(id, grid, aircraft, path = "data/")

../doc/Supersonic_Routes_in_depth.html#cache

14 mach_kph

Arguments

id Identifying text, see above. Recommended to use a version number or date.

grid Your route grid dataset. The grid@name will be added to the filename.

aircraft Your aircraft dataset. The attr(aircraft,"aircraftSet") will be added to
the filename.

path By default "data/", where the file will be saved.

Value

Invisible true

See Also

For more details see the cache section in the vignette: vignette("Supersonic_Routes_in_depth",
package = "himach"). or Vignette on caching

Examples

not run
hm_save_cache("v2", grid, ac) #save here

mach_kph Speed of sound, for Mach to km conversion

Description

1 Mach is approximately 1062kph in standard met conditions at the altitude for supersonic flight
(approx 50,000 feet).

Usage

mach_kph

Format

double

../doc/Supersonic_Routes_in_depth.html#cache

make_aircraft 15

make_aircraft Make aircraft data from minimum dataset

Description

make_aircraft ensures a minimum set of variables describing aircraft

Usage

make_aircraft(ac = NA, sound_kph = himach::mach_kph, warn = TRUE)

Arguments

ac Dataframe containing the minimum fields, or NA (default)

sound_kph Speed of sound used to convert from Mach to kph, default mach_kph=1062 at a
suitable altitude.

warn Warn if no ac supplied, so default set is used. Default TRUE.

Details

This function provides a test set of aircraft if necessary and adds variables to a minimal set of data
to give all the information that will be needed.

This minimal set needs to have the following fields:

• id, type: a very short, and longer text identifier for this aircraft

• over_sea_M, over_land_M: the eponymous two speeds, given as a Mach number

• accel_Mpm: acceleration in Mach per minute between these two

• arrdep_kph: the speed on arrival and departure from airports, given in km per hour

• range_km: range in km

An attribute is set to help keep track of where the aircraft data came from (and whether a new
cache is needed). If the aircraftSet attribute of the ac parameter is not set, the set is treated as
’disposable’.

For more details see the help vignette: vignette("SupersonicRouting", package = "himach")

Value

Dataframe with at least 11 variables describing the performance of one or more aircraft

16 make_airports

Examples

do minimal version (we know it will use the default so turn off warning)
ac <- make_aircraft(warn = FALSE)

on-the-fly example
ac <- data.frame(id = "test", type = "test aircraft",

over_sea_M = 2.0, over_land_M = 0.9, accel_Mpm = 0.2,
arrdep_kph = 300, range_km = 6000, stringsAsFactors=FALSE)

ac <- make_aircraft(ac, warn = FALSE)

Not run:
example for your own data
aircraft <- utils::read.csv("data/aircraft.csv", stringsAsFactors = FALSE)
aircraft <- make_aircraft(aircraft)
strongly recommended to record the file name for later reference
attr(aircraft, "aircraftSet") <- "aircraft.csv"

End(Not run)

make_airports Make or load airport data

Description

make_airports ensures a minimum set of variables describing airports

Usage

make_airports(ap = NA, crs = crs_longlat, warn = TRUE)

Arguments

ap Dataframe containing the minimum fields, or NA (default)

crs Coordinate reference system for the coded lat-longs. Default 4326.

warn warn if default set is used (default = TRUE)

Details

This function provides a test set of airports if necessary from airportr::airports and geocodes
the lat-long of this or the dataset provide as ap.

This minimal set needs to have the following fields:

• APICAO: the 4-letter ICAO code for the airport (though there is no validity check applied, so
’TEST’, or ’ZZZZ’ could be used, for example)

• lat, long: latitude and longitude in decimal degrees

make_AP2 17

Value

Dataframe with, in addition, a geocoded lat-long.

Examples

do minimal version
airports <- make_airports()

on-the-fly example
airports <- data.frame(APICAO = "TEST", lat = 10, long = 10, stringsAsFactors = FALSE)
airports <- make_airports(airports)

Not run:
example for your own data
airports <- utils::read.csv("data/airports.csv", stringsAsFactors = FALSE)
airports <- make_airports(airports)

End(Not run)

make_AP2 Make airport-pair dataset

Description

make_AP2 creates an airport-pair set from two sets of airports

Usage

make_AP2(adep, ades, ap = make_airports())

Arguments

adep, ades Identical-length lists of airport codes
ap List of locations of airports, defaults to the output of make_airports.

Details

This function takes two lists of airports (of the same length), specified as 4-letter codes and com-
bines them, adding the fields:

• from_long, from_lat, to_long, to_lat: the airport lat-longs with adep first
• AP2: a name for the route in a specific order
• gcdist_km: the great circle distance in km

In AP2 European airports (crudely, from starting letter = ’E’ or ’L’) are listed first, otherwise in
alphabetical order. If unidirectional is TRUE, then ">" is the separator, otherwise "<>". (Unidirec-
tional not currently supported)

For more details see the introductory vignette.

../doc/Supersonic_Routes.html

18 make_route_envelope

Value

Dataframe with additional variables as described above.

Examples

airports <- make_airports() #get a default set of lat-longs
ap2 <- make_AP2("NZAA","NZCH", airports)

make_route_envelope Make range-constrained envelope between 2 airports

Description

make_route_envelope finds the range envelope for a given route

Usage

make_route_envelope(ac, ap2, envelope_points = 200, fuzz = 0.005)

Arguments

ac, ap2 See find_route

envelope_points

How many points are used to define the ellipse? Default 200.

fuzz Add a little margin to the range, to allow the longest range to be flown, rather
than be cut off at the boundary. (Default 0.005)

Details

The ’route envelope’ is the region within which a route from A to B must remain. This is an ellipse.

It differs from the pure ’range envelope’ which is the points which an aircraft can reach from a given
airport.

Value

sf POLYGON with ad hoc coordinate reference system.

Examples

Need aircraft and airport datasets
ac <- make_aircraft(warn = FALSE)
ap <- make_airports()
z <- make_route_envelope(ac[1,], make_AP2("EGLL","KJFK",ap))

make_route_grid 19

make_route_grid Make lat-long grid for route finding

Description

make_route_grid creates, and optionally classifies, a lat-long route grid

Usage

make_route_grid(
fat_map,
name,
target_km = 800,
lat_min = -60,
lat_max = 86,
long_min = -180,
long_max = 179.95,
classify = FALSE

)

Arguments

fat_map MULTIPOLYGON map defining land regions

name String assigned to the name slot of the result

target_km Target length. Default 800km only to avoid accidentally starting heavy compute.
30-50km would be more useful.

lat_min, lat_max
Latitude extent of grid

long_min, long_max
Longitude extend of grid. Two allow small grids crossing the 180 boundary, the
function accepts values outside [-180,180), then rounds to within this range.

classify Whether to classify each link. Defaults to FALSE only to avoid accidentally
starting heavy compute.

Details

This function creates a GridLat object that contains a set of point on a lat long grid (ie all the points
are on lines of latitude). It also joins these points into a lattice. Optionally, but required later, it
classifies each link as land, sea, or transition, with reference to a given map (typically including a
coastal buffer).

The definitions are

• land: both ends of the link are on land

• sea: both ends are on sea, and the link does not intersect the land

• transition: otherwise

20 map_routes

The length of the links will be around target_km or 50pct longer for the diagonal links.

For more details see the help vignette: vignette("Supersonic Routing", package = "himach")

Value

gridLat object containing points and lattice.

Examples

NZ_buffer <- hm_get_test("buffer")
system.time(

p_grid <- make_route_grid(NZ_buffer,"NZ lat-long at 300km",
target_km = 300, classify = TRUE,
lat_min = -49, lat_max = -32,
long_min = 162, long_max = 182)

)

map_routes Map a set of routes

Description

map_routes plots routes, with many options

Usage

map_routes(
thin_map,
routes = NA,
crs = himach::crs_Atlantic,
show_route = c("speed", "aircraft", "time", "circuity", "acceleration", "traffic"),
fat_map = NA,
avoid_map = NA,
ap_loc = NA,
ap_col = "darkblue",
ap_size = 0.4,
forecast = NA,
fc_var = NA_character_,
fc_text = NA_character_,
crow = FALSE,
crow_col = "grey70",
crow_size = 0.2,
route_envelope = FALSE,
bound = TRUE,
bound_margin_km = 200,
simplify_km = 8,
land_f = "grey90",

map_routes 21

buffer_f = "grey60",
land_c = "grey85",
land_s = 0.2,
avoid_f = "grey80",
avoid_c = "grey95",
avoid_s = 0.3,
l_alpha = 0.8,
l_size = 0.5,
e_alpha = 0.4,
e_size = 0.6,
e_col = "grey70",
refuel_airports = ap_loc,
rap_col = "red",
rap_size = 0.4,
scale_direction = -1,
title = "",
subtitle = "",
warn = FALSE,
...

)

Arguments

thin_map The minimum is a MULTIPOLYGON map, ’thin’ in that it is without buffer, so a
normal coastline map.

routes as generated by find_route

crs Coordinate reference system, default crs_Atlantic.

show_route one of "speed", "aircraft", "time", "circuity", "accel", "traffic" to indicate what
goes in the legend.

fat_map optional coast + buffer map, default NA.

avoid_map optional map of no-fly zones, default NA.

ap_loc Show used origin and destination airports if this is a set of airports from make_airports,
or not if NA (default). This dataset can be all airports, and is filtered to those
used by routes.

ap_col, ap_size Colour and size of used airport markers (dark blue, 0.4)
forecast, fc_var, fc_text

Forecast set and two strings. See details, default NA.
crow, crow_col, crow_size

If TRUE, show the ’crow-flies’ direct great circle, in colour crow_col and thick-
ness crow_size. Default FALSE, "grey70", 0.2

route_envelope show the route envelope (default FALSE).
bound, bound_margin_km

If bound=TRUE (default) crop to bounding box of the routes, with additional
bound_margin_km in km (default 200)

simplify_km Simplify the two maps to this scale before plotting (default 10).

22 map_routes

land_f, buffer_f, avoid_f
fill colours for thin, fat and no-fly maps, default grey 90, 70 and 80, respectively

land_c, land_s boundary colour and size for land areas (countries), default grey 85 and 0.2,
respectively (use NA to turn off)

avoid_c, avoid_s
boundary colour and size for avoid areas, default grey 95 and 0.3, respectively

l_alpha, l_size line (route) settings for alpha (transparency) and width, defaults 0.6 and 0.4.
e_col, e_alpha, e_size

colour, alpha and width for the range envelope. Default "grey70", 0.4, 0.6
refuel_airports

Show the used refuel airports using these locations, or nothing if NA. (Defaults
to same as ap_loc.)

rap_col, rap_size
Colour and size of refuel airport markers (red, 0.4)

scale_direction

Passed to scale_colour_viridis, either -1 (default) or or 1.

title, subtitle Passed to ggplot.

warn if TRUE show some warnings (when defaults loaded) (default FALSE)

... further parameters passed to scale_colour_viridis_b (or _c, _d), such as
breaks = .

Details

This function plots the routes, with options for additional layers. Multiple routes are expected, and
they can be coloured by time advantage, by speed along each segment, or by aircraft type.

The option show_route "time" requires ’advantage_h’ to have been added to the routes set, from
the route summary. If it hasn’t then this is done in a local version, then discarded. Running
summarise_routes to do this requires an airport dataset; if is.na(ap_loc) then this is not avail-
able, so a default set is used. You can turn on warn to see if this is happening, but by default it is
silent.

For show_route = "speed", "aircraft", "time", "circuity" or "accel", the information is already avail-
able in the routes dataset. For show_route = "traffic" you need to provide a forecast dataset
that contains at least the fullRouteID and acID fields which are normal in the routes dataset, and
a field giving the volume of the forecast fc_var. This could be flights, seats, or something else: use
fc_text for the legend title to show the units of fc_var. Combinations of fullRouteID and acID
must be unique, which probably means you must filter by forecast year and forecast scenario before
passing to map_routes.

The time to compute the map may not be very different with simplify_km varying between 2km
and 20km, but the time to plot on the screen, or ggsave to a file, is longer than the compute time.
It is this latter time that’s reduced by simplifying the maps. For single, or short routes, you can
probably see the difference between 2km and 10km, so it’s your choice to prefer speed or beauty.

Value

A ggplot.

profile_routes 23

Examples

#see introductory vignette

profile_routes Profile a set of routes

Description

Profile a set of routes

Usage

profile_routes(
routes,
yvar = c("hours", "longitude"),
ap_loc = make_airports(warn = FALSE),
n_max = 2

)

Arguments

routes as generated by find_route

yvar horizontal axis is hours or longitude

ap_loc Airports and coordinates, by (silent) default from make_airports

n_max maximum number of routes to plot (default 2)

Value

A list of named list pairs of plots, which can be displayed using eg result[1].

Examples

not run ---
plot_list <- profile_routes(routes, n_max = 3)
plot_list # to display them all

24 st_window

st_window Version of st_transform with view window to avoid dateline

Description

st_window does a st_transform but first cuts the data to an appropriate view window and so
avoids problems with objects wrapping around the back of the globe

Usage

st_window(m, crs = himach::crs_Atlantic, longit_margin = 0.1)

Arguments

m A map dataframe, ie of class sf and data.frame, or an sfc_MULTIPOLYGON

crs Destination coordinate reference system, as in st_tranform

longit_margin Amount trimmed off the ’far side’ of the projection in degrees.

Details

st_wrap_dateline _should_ handle the break in a map projections but uses ‘GDAL‘ for this.
Given persistent issues in installing GDAL, st_window achieves the same using s2 instead.

It works for any ’simple’ projection, in the sense of one that has a dateline that is a single line of
longitude: ie the proj4string contains either "longitude_of_center", so the dateline is that +180; or
not, in which case it assumes the "longitude_of_center" is 0.

Value

sf dataframe, same as the parameter m

Examples

world <- sf::st_as_sf(rnaturalearthdata::coastline110)
w_pacific <- st_window(world, crs_Pacific)
ggplot2::ggplot(w_pacific) + ggplot2::geom_sf()

bad - not run - dateline problem example
ggplot2::ggplot(st_transform(world, crs_Pacific)) +
ggplot2::geom_sf()

summarise_routes 25

summarise_routes Summarise a set of routes

Description

Reduce a set of routes to a one-line per route summary

Usage

summarise_routes(routes, ap_loc, arrdep_h = 0.5)

Arguments

routes Each segment in each route, as produced by find_route or find_leg

ap_loc List of airport locations, output of make_airports

arrdep_h Total time for the M084 comparator aircraft to arrive & depart in hours. Default
0.5.

Details

This function takes the output of find_route and summarises to one line per (full) route.

With refuelling, there can be multiple ’full routes’ for each ’route’. The best column indicates the
best route for each routeID.

The results are rounded to a reasonable number of significant figures. After all this is just an
approximate model. The arrdep_h has been checked against actual and is reasonable (observed
range roughly 0.3-0.5).

Value

Dataframe with summary of the route, sorted in ascending order of advantage_h so that the best
route are plotted on top. The fields are:

• timestamp: when the leg was originally generated (it may have been cached)

• fullRouteID: including the refuel stop if any

• routeID: origin and destination airport, in make_AP2 order

• refuel_ap: code for the refuelling airport, or NA

• acID, acType: aircraft identifiers taken from the aircraft set

• M084_h: flight time for a Mach 0.84 comparator aircraft (including 2*arrdep_h)

• gcdist_km: great circle distance between the origin and destination airports

• sea_time_frac: Fraction of time_h time spent over sea, hence at supersonic speed, or accel-
erating to, or decelerating from supersonic speed

• sea_dist_frac: as sea_time_frac, but fraction of dist_km

• dist_km: total length of the route, in km

26 summarise_routes

• time_h: total time, in hours

• n_phases: number of distinct phases: arr/dep, transition, land, sea, refuel.

• advantage_h: M084_h - time_h

• circuity: the route distance extension (1 = perfect) dist_km / gcdist_km

• best: for each routeID, the fullrouteID with maximum advantage_h

Examples

here we use a built-in set of routes
see vignette for more details of how to obtain it
airports <- make_airports(crs = crs_Pacific)
NZ_routes <- hm_get_test("route")
sumy <- summarise_routes(NZ_routes, airports)

Index

∗ datasets
crs_120E, 2
crs_Atlantic, 3
crs_longlat, 3
crs_N, 4
crs_Pacific, 4
crs_S, 5
mach_kph, 14

crs_120E, 2, 3–5
crs_Atlantic, 3, 3, 4, 5
crs_longlat, 3, 4, 5
crs_N, 3, 4, 4, 5
crs_Pacific, 3, 4, 4, 5
crs_S, 3–5, 5

find_leg, 5, 8, 9, 25
find_route, 6, 7, 10, 18, 21, 23, 25
find_routes, 9

GridLat, 12, 19
GridLat-class, 10

hm_clean_cache, 11
hm_get_test, 12
hm_load_cache, 13
hm_save_cache, 13

mach_kph, 14
make_aircraft, 8, 10, 15
make_airports, 8, 10, 16, 17, 21, 23, 25
make_AP2, 8, 17, 25
make_route_envelope, 6, 8, 18
make_route_grid, 8, 12, 19
map_routes, 20

profile_routes, 23

st_window, 24
st_wrap_dateline, 24
summarise_routes, 25

27

	crs_120E
	crs_Atlantic
	crs_longlat
	crs_N
	crs_Pacific
	crs_S
	find_leg
	find_route
	find_routes
	GridLat-class
	hm_clean_cache
	hm_get_test
	hm_load_cache
	hm_save_cache
	mach_kph
	make_aircraft
	make_airports
	make_AP2
	make_route_envelope
	make_route_grid
	map_routes
	profile_routes
	st_window
	summarise_routes
	Index

